Светлов Н.М.

Москва, РГАУ-МСХА им. К.А. Тимирязева

БЕСКОНЕЧНО МАЛЫЕ ОПРЕДЕЛИТЕЛИ И ИНТЕРПРЕТАЦИЯ СТОИМОСТНЫХ ПРОПОРЦИЙ

Бесконечно малым определителем назовём $\det(\mathbf{M})\neq 0$, если $\det(\mathbf{M}+\Delta)=0$, а все компоненты Δ бесконечно малые. Он позволяет аппроксимировать однородные системы уравнений $\mathbf{p}(\mathbf{M}+\Delta)=\mathbf{p}$ системами $\mathbf{p}\mathbf{M}=\mathbf{p}$ с бесконечно малой погрешностью. Если среди компонентов \mathbf{p} нет нулевых, то строки матрицы \mathbf{M}^{-1} пренебрежимо мало отличаются от $k\mathbf{p}$, где k — подходящий скаляр.

К системам $\mathbf{pM} = \mathbf{p}$ можно свести условия Куна-Таккера в точке оптимума (или оптимума по Парето) любой экономико-математической модели с выпуклым и замкнутым множеством допустимых решений. Тогда компоненты \mathbf{M}^{-1} отражают (с точностью до скаляра плюс пренебрежимая погрешность) прирост интенсивности производства, компенсирующий изъятие единицы ограниченного блага в малой окрестности оптимума. Следовательно, ненулевые оптимальные цены почти пропорциональны приросту интенсивности любого ненулевого производства, компенсирующему единичное изъятие каждого из этих благ.

Nikolai M. Svetlov Moscow, MTAA

INFINITESIMAL DETERMINANTS AND INTERPRETATION OF VALUE

Infinitesimal determinant is $\det(\mathbf{M}) \neq 0$ subject to $\det(\mathbf{M} + \Delta) = 0$ and all components of Δ being infinitesimal. It allows approximation of homogenous simultaneous equations $\mathbf{p}(\mathbf{M} + \Delta) = \mathbf{p}$ with $\mathbf{p}\mathbf{M} = \mathbf{p}$ plus infinitesimal error. If all components of \mathbf{p} are nonzero then the rows of \mathbf{M}^{-1} are nearly equal to $k\mathbf{p}$, where k is a pertinent scalar.

A system $\mathbf{pM} = \mathbf{p}$ can be derived from Kuhn-Tucker conditions applied to a (Pareto-)optimum of any mathematical programming model providing a convex and closed feasibility set. In this case the components of \mathbf{M}^{-1} are the increments of production intensity that compensate unitary withdrawal of a scarce commodity in a vicinity of the optimum. As a consequence, nonzero optimal prices are nearly proportional to the incremental intensities of any nonzero production process that compensate unitary withdrawal of the commodities the prices correspond to.